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1 Introduction

1.1 What is Darwin2K?

Darwin2K is a software package for simulating, synthesizing, and optimizing ro-
bots. The motivation behind Darwin2K is to provide a set of software tools to make the
robot configuration process easier for the robot designer, and to allow better robots to be
designed. Traditionally, the configuration design process (or configuration synthesis) has
addressed the creation of the high-level form of the robot: whether it will be a manipula-
tor or mobile robot, whether the robot will have wheels or legs or some combination
thereof, and so on. After a particular configuration is selected, the dimensions, compo-
nents, and other specific properties are determined; this may be called parametric design.
In some cases, numerical analysis and optimization may be undertaken to determine the
best values for specific properties, though often values which simply satisfy a set of re-
quirements are selected by hand.

Darwin2K combines some aspects of the configuration and parametric design pro-
cesses, for two related reasons. First, the performance and behavior of a configuration of-
ten cannot be accurately predicted without specific parametric values. Second, Darwin2K
uses simulation to measure a robot’s performance, and simulation requires knowledge of
the robot’s configuration as well as its parametric properties. However, Darwin2K does
not address the entire configuration synthesis problem, nor the entire parametric optimi-
zation problem. Instead, it tackles the medium- to high-level parametric design and opti-
mization problem, and the low- to medium-level configuration synthesis problem. For
example, while Darwin2K can optimize a robot’s kinematic dimensions and actuator
choices, it will not generate a detailed design with information about cable routing, bolt
patterns, and so on. This lowest level of detail for a design can usually be generated from
a higher-level design without requiring many design iterations--that is, the higher-level
design will not usually require significant modifications to address the issues arising in
detailed design.

At the other end of the design spectrum, Darwin2K will not make the highest level
of design decisions such as deciding whether a flying, swimming, walking, or rolling ro-
bot is best suited for a task. This decision process involves envisioning a task description
and accompanying motion plans, which must then be embodied in the choice of robot
controller, tool trajectories, and so on, before a configuration’s performance can be quan-
titatively evaluated. The designer can, however, use Darwin2K to generate reasonably
detailed, well-optimized designs for multiple categories (e.g. flying or walking) of config-
urations, allowing the designer to make an informed choice about configuration issues.
Simulating a robot requires the designer to provide a description of the task, including
properties such as trajectories, controllers, payload models; if the designer can provide
these for multiple classes of configurations, then Darwin2K can be used to synthesize and
optimize robots for each general class of configurations.
Introduction    9
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1.2 Software overview

Darwin2K contains several programs and a suite of robot simulation libraries. The
two main programs are the synthesizer (or Population Manager (PM)) and the evaluator
(see Figure 1.1). The synthesizer generates robot designs and sends them to the evaluator,
which simulates the robot and returns performance measurements to the synthesizer. In
practice, many evaluator processes can be distributed across a network of computers (or
among multiple CPUs in a multiprocessor computer) since evaluating designs is the most
computationally expensive part of the synthesis process. The evaluator program makes
use of Darwin2K’s libraries of robot parts and simulation and control algorithms. Some
of the features included in these libraries are:

• kinematic simulation
• dynamic simulation
• Jacobian-based trajectory following
• PID control
• estimating link deflection
• computing joint torques
• collision detection

The libraries also contain a few dozen parameterized modules, which represent robot parts
such as links, joints, end effectors, and mobile bases. These modules are the building
blocks from which the designer and the synthesizer construct robots.

While a wide range of design problems can be addressed with the capabilities and
modules included in Darwin2K, there will always be tasks for which special-purpose con-

Synthesizer
configurations

performance data

Figure 1.1:  Software architecture
Darwin2K consists of two main programs: the synthesizer (or Population Manager),
and the evaluator. The evaluator includes general-purpose libraries for simulating
and controlling robots, while dynamic libraries allow the designer to provided task-
specific modules, task descriptions, controllers, and simulation code. Many
evaluator processes can be distributed across multiple computers or processors to
reduce overall runtime.

task-specific
library

Evaluator
task-specific

library

task
specification
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trollers or modules are needed. For this reason, Darwin2K uses an extensible, object-ori-
ented software architecture that allows new controllers, simulation algorithms, metrics,
robot modules, and other software objects to be added and to interact with existing soft-
ware components. These objects are written in C++ and can be compiled into dynamic li-
braries, so that Darwin2K can use them without requiring the evaluator and synthesizer
programs to be recompiled.

1.3 Tutorial overview

There are four main parts to this tutorial. In order of increasing complexity, they
are:

• specifying robots in Darwin2K;
• simulating robots;
• using the synthesizer; and
• adding task-specific objects.

The first three topics describe the use of Darwin2K and do not require any knowledge of
programming, though some information on the C++ implementation will occasionally be
given for readers who are interested in extending Darwin2K. The last section (adding
task-specific objects) is more involved and assumes a working knowledge of C++ (and of
any algorithms the designers might want to implement!). Knowledge of robot kinematics
and of basic mechanics is useful but not essential.
Introduction    11
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2 Building Robot Configurations

2.1 Parameterized Modules

In Darwin2K, robots are built from parameterized modules. As the name implies,
these modules may have a number of parameters describing their properties. A module
that represents a robot joint might have parameters which specify the joint’s motor and
gearhead, while a module for a wheeled mobile base might have parameters for the sus-
pension type, wheelbase, and wheel diameter. Some parameters represent continuous
values such as dimensions, while others are discrete and may, for example, select compo-
nents from a list. Modules also have connectors, which are used to connect multiple mod-
ules to form a complete robot. Figure 1.1 shows a rightAngleJoint module, which is
a joint with one degree-of-freedom (DOF) and which has a 90 degree angle between its
two connectors. (Note that the courier font is used when discussing software objects,
types, or examples; this convention will be followed throughout the tutorial.) There are
four general types of modules in Darwin2K (joints, links, bases, and tools), each with spe-
cial capabilities. For example, joints have degrees of freedom, while tools have tool con-

Figure 2.1:  Sample parameterized module
A rightAngleJoint module is shown here with a list of its parameters. The first two
parameters select a motor and gearbox for the module’s single degree of freedom (whose
joint axis is labelled ); one parameter chooses a material (e.g. a particular aluminum
alloy) for the module, and the remaining parameters determine the module’s size. Each
of the parameters can be individually varied by the synthesizer. The module’s two
connectors are labelled c1 and c2, respectively.

Ẑ

Parameters:

• motor selection
• gearhead selection
• material selection
• tube outer diameter
• tube wall thickness
• overall length

motor

gearhead

length

diameter

material

wall

link 2

link 1

Ẑ

c1

c2

thickness
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trol points (TCPs). Before going into the details of different module types, let us see how
modules are specified by the user.

2.1.1 Module names and structure

Darwin2K uses a simple, LISP-like text format for reading and writing modules
and configurations. A simple module with no parameters would be described like this:

(palletFork nil nil)

The token palletFork is the module’s type; this tells Darwin2K what type of module
to create based on the text description--in this case, a set of pallet forks that might be
found on a forklift. The first nil indicates that the module has no parameters, and the
second nil indicates that the module has no attachments (i.e. it is not attached to any oth-
er modules). Note that the module type (e.g. palletFork ) cannot be just any string; it
has to be the name of an existing module type (actually the C++ class name of the module)
in Darwin2K. If you want to see what this module looks like, run the commands

% cd $D2KTUTORIAL/examples
% displayCfg palletFork.l

(This assumes that you’ve set the shell environment variable D2KTUTORIALto the direc-
tory containing this file, and that the program displayCfg is in your path.) If you look
at the file palletFork.l , you might notice that there is an extra set of parentheses
around the module. This is because displayCfg expects a complete configuration, not
just one module, and a configuration is a list of modules (plus some other stuff we’ll get
to shortly). So, if you want to use displayCfg to look at a single module, remember to
enclose the module in an extra set of parentheses (i.e. there should be two left parens be-
fore the module name.)

2.1.2 Parameters

A more complicated module can have parameters. One such module is the
squarePrism , which is a hollow link module that has a square cross-section. The mod-
ule has two parameters, one for cross-section width and one for length:

Here, instead of the first nil there is a list of two parameters. Note that each parameter

(squarePrism ((var 0.1 0.8 3 4)
   (var 0.2 1.5 3 5))
  nil)
14    Parameterized Modules
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is surrounded by parentheses, as is the list of parameters. Each parameter has five fields:

If we were only concerned with describing the actual value of a parameter (for ex-
ample, the length) then we would only need one number. However, when the synthesizer
is creating or modifying configurations, it also needs to know the minimum and maxium
values each parameter can take on, what resolution is needed, and whether or not a pa-
rameter’s value can be changed. The other parts of the parameter provide this informa-
tion. The const -flag tells the synthesizer whether or not it can change a parameter’s
value; this is useful if the designer already knows the best value for a parameter, or if
there is some sort of constraint on the parameter’s value. A parameter’s const -flag may
have one of two values: var indicates that the paremeter value is variable, and const in-
dicates that it is constant. The next two fields (minimum m and maximum M) specify the
allowable range of parameter values. The fourth field b is the number of bits that should
be used to represent the parameter’s value, and the fifth field i is the parameter’s integer
value, which determines the parameter’s actual value (e.g. the length). The actual value a
is obtained from the number of bits, minimum and maximum values, and integer value
by simple linear interpolation:

(2.1)

Values of i range from 0 to 2b-1; thus, an integer value of 0 gives an actual value of m, and

an integer value of 2b-1 gives an actual value of M. For example, the first parameter of the
squarePrism above is

(var 0.1 0.8 3 4)

and applying Equation 2.1 gives an actual value of 0.5. This may seem overly complicated
at first, but if you just want to specify a particular actual value you can set m to the actual
value you want, pick some value greater than zero for b, pick an arbitrary number for M,
and set i to zero. For example if you want a parameter to represent the value 2.5 and you
don’t care about the resolution or any of that other junk, you can write

(var 2.5 2.5 1 0)

Since the integer value is 0, the actual value is at the bottom of the range of allowable val-
ues and is thus equal to the minimum -- 2.5 in this case.

(var 0.1 0.8 3 4)

max
# bits

integer value

const flag
min

a m
i

2b 1–
-------------- M m–( )+=
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2.1.3 Selecting components with parameters

(Note: if you’re in a hurry to put together a complete robot, go ahead and skip on to Section
2.2).

In the previous example the parameters represented continuous values. But what
if a parameter selects a motor from a list of motors? In this case, m, M, and b are ignored
and only the const-flag and i are used to determine the parameter’s value (i.e. to select the
motor). While a module type can have a hard-coded list of components for its selection
parameters, Darwin2K allows each module to specify a component context. The compo-
nent context is simply a list of names of the components that can be used for each of the
module’s selection parameters. In this way, two modules of the same type but with different
component contexts can represent two very different performance ranges: one joint mod-
ule might have a component context with very small motors, while another joint module
of the same type could have a component context with very large motors. If a module has
a component context, it is specified after the module name:

The component context materialList1 appears after the module name hollowTube ,
indicating that components should be chosen from the list materialList1 . The hollow-
Tube module is...well, a hollow tube (Figure 2.2). The first parameter is the module’s only
component selection parameter, and determines which type of material (e.g. aluminum,
stainless steel, etc.) the link is made out of. While material isn’t exactly a “component”, it
is a discrete choice.

When a module specifies a component context, Darwin2K has to have a definition
for that context--and for the components included in the context--in order to create a
physical representation of the module. This information comes from the component data-
base file, or componentDB . Figure 2.3 shows the part of a component database file that
defines the component context for a particular type of joint module. In this case, parame-
ter 0 would select a motor (from the componentList labeled “motors”), and parameter
1 would select a gearhead (from the list labeled “gearHeads”); other parameters of the

(hollowTube materialList1 ((var 0 1 2 0)
(var 0.05 1.0 3 2)
(var 0.05 0.15 3 7)
(var 0.001 0.005 3 0))

     ())

Parameters:
• material selection
• length
• outer diameter
• wall thickness

Figure 2.2:  The hollowTube  module
The hollowTube is a link module with four parameters. The first parameter (material type)
is a selection parameter, and the others are continuous parameters representing
dimensions.
16    Parameterized Modules
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module do not select components and so are not mentioned in the component context. In
addition to the component contexts, the component database file contains descriptions of
each component, such as the density and modulus of elasticity for materials, or the gear
ratio, efficiency, and torque and velocity limits for gearheads. Currently, there are com-
ponents in Darwin2K for electric motors, gearheads, harmonic drives, lead screws, and
materials. The motors and gearhead descriptions are taken from Maxon catalogs, while
the harmonic drives are from HD Systems. New components of existing types (e.g. mo-
tors) can be added by editing the componentDB file, and new types of components (such
as hydraulic pumps and actuators) can be added by writing new C++ classes for the com-
ponents.

Some selection parameters may have dependencies on other selection parameters:
for example, one parameter might specify a motor and another might specify a gearhead,
but not all gearheads are compatible with all motors. To handle compatibility constraints
such as this, Darwin2K allows components to specify dependencies on other components
in the component database file. For example, the component description for a particular
gearhead is shown in Figure 2.4. The description indicates that the gearhead may only be
used with one of two motors, so if a module’s motor selection parameter specifies a dif-
ferent motor then this gearhead will not be considered when the module’s gearhead se-
lection parameter is being interpreted. The order of a module’s parameters determines

how the component dependencies are resolved: a component specified by the jth param-
eter can depend only on the components selected by parameters 0 through j-1, thus pre-
venting cyclic dependencies.

context revoluteJoint {
parameter 0 "motors";
parameter 1 "gearHeads";

}

componentList "motors" {
rotaryActuator "maxonRE25.118755";
rotaryActuator "maxon2260.815";
rotaryActuator "maxonRE36.118800";
rotaryActuator "maxon2260.889";

}

componentList "gearHeads" {
gearBox "maxon16.118188";
gearBox "maxon26.110396";
gearBox "maxon32.110464";
gearBox "maxon42.110404";

}

Figure 2.3:  Component context and lists
The component context revoluteJoint indicates which components lists should be
used for a module’s selection parameters. The lists themselves (motors and
gearHeads in this example) contain the types and names of specific components,
which are also defined in the componentDB file.
Building Robot Configurations    17
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To add a new component (of existing type, e.g. gearhead) to the componentDB file,
simply create an entry similar to the one shown in Figure 2.4. The first part of the com-
ponent description is a token for the component’s type--gearBox . Like the module type
in a module description, the component type is a predefined identifier that tells
Darwin2K what type of software object to create. The next part of the description is the
component’s name, written as a string of characters enclosed in quotes. After that is an
open brace (‘{‘) starting the list of component properties. The values for each of the com-
ponent’s properties are then given, followed by a close brace (‘}’). (Each type of compo-
nent has its own properties; the properties for Darwin2K’s current component types are
listed in Table 2.1). The type and name of any component dependencies are then given in
another list. If the component doesn’t depend on any others, then this list is omitted. Af-
ter defining a component, it can be included in a component list (as shown earlier in Fig-
ure 2.3), which is in turn included in a component context.

2.2 Connecting modules: the Configuration Graph

Parameterized modules describe only parts of a robot; an additional representa-
tion is needed to complete the robot description. The configuration graph is just that: it
describes the way the modules are connected to each other. The configuration graph is a
directed acyclic graph (DAG) in which nodes are modules and edges are physical connec-
tions between modules. The edges of the graph are directed: modules specify connections
to their children via outgoing edges, but do not refer to their parent connections (incom-
ing edges). The configuration graph is stored as a list of topologically sorted modules, and
cycles in the graph are prevented by only allowing modules to specify attachments to
modules which occur later in this list. Each module in a configuration can specify an at-
tachment to another module for each connector. Attachments contain several fields: the
ID of the connector on the parent module, the index of the child module, the ID of the con-

gearBox "maxon32.110374" {
  l = 0.05; d = 0.032; m = 0.194;  mt = 6.75;  ct = 4.5;
  r = 190;  e = 0.7;  v = 5000.0;
} {
  rotaryActuator "maxonRE35.118778";
  rotaryActuator "maxonRE36.118800";
}

Figure 2.4:  Component description for a gearbox
The first part of the component description gives values for the component’s
properties, such as gear ratio, length, diameter, mass, and maximum torque rating.
The second part specifies the other components with which this component is
compatible. In this case, the only motors in the componentDB file that the gearbox
may be used with are the Maxon RE35.118778 and the Maxon RE36.118800.
18    Connecting modules: the Configuration Graph
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Table 2.1:  Component properties

component type property units

length m

diameter m

mass kg

stall torque Nm

continuous torque Nm

rotaryActuator no load speed rpm

rotor inertia kg m2

stall current A

resistance Ω

torque constant Nm/A

speed constant rpm/V

speed-torque gradient rpm/Nm

length m

diameter m

mass kg

gearBox maximum torque Nm

continuous torque Nm

gear ratio none

efficiency none

maximum velocity rpm

density kg/m3

material modulus of elasticity Pa

shear modulus Pa

mass per length kg/m

maximum force m

leadScrew diameter m

efficiency none

rotations per distance rad/m
Building Robot Configurations    19
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nector on the child module, a const -flag, handedness, and a twist parameter:

The connector IDs simply identify which connectors are being attached; the twist param-
eter indicates the angle of rotation about the z-axis of the child’s connector with respect
to the parent’s connector. The handedness can be either left , right , or inherit , and
indicates whether the module’s geometry should be normal (left ) or a mirror image
(right ) A handedness of inherit means that the module should have the same hand-
edness as its parent module. As with parameters, the const -flag can be used to indicate
that a property (in this case, the module and connector references) should not be changed
by the synthesizer. This allows the designer to specify that a particular sequence of mod-
ules should be untouched by genetic manipulations. For example, if the designer knew
that a particular wrist configuration and end effector are required, then she would set the
const -flag for the attachment between the wrist module and end effector. Thus, the de-
signer can easily add significant constraints on the final form of the synthesis results, ef-
fectively incorporating task-specific knowledge and human expertise into the synthesis
process. Figure 2.5 shows the text representation of a simple robot, and its physical instan-
tiation.

For the purposes of simulation and analysis, the configuration graph is instantiat-
ed into a mechanism consisting of links (rigid bodies) connected by joints. This process is
performed recursively, starting with the base and proceeding in a depth-first manner.
Each module creates a physical description itself (including the shape of the module, the
location of connectors, and any joints within the module), and then the physical represen-
tations for all modules are connected as specified by the configuration graph. Parts of dif-
ferent modules that are rigidly attached via connections are grouped into rigid bodies,
whose inertial properties are then calculated.The createGeometry method is called for
each module, and the parts on either side of inter-module connections are then attached
to each other by a rigid connection. (All connections between modules are rigid; the only
non-rigid connections are those forming joints between parts within the same module.)
After all modules have created their geometric representation, the parts that are rigidly
connected (as opposed to those connected by translating or rotation connections) are
grouped into rigid bodies, and the inertial properties of each rigid body are computed us-
ing Coriolis [Baraff96]. The mechanism is thus represented by a tree, with nodes repre-
senting rigid bodies (links) and edges representing joints between bodies. The root of the
tree is the one of the base’s links. Figure 2.6 shows the configuration graph and mecha-
nism (links and joints) representations for a simple, non-branching manipulator. After
creating the mechanism representing the robot, the mechanism tree is traversed to iden-
tify serial chains. The mechanism and serial chain representations are used by numerous
algorithms during the evaluation process, such as computing the robot’s Jacobian or dy-

(var 0 (0 1 left (var 0 270 2 1)))

const flag
parent connector ID

index of child module
child connector ID

handedness
twist parameter
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((inlineRevolute2 revoluteJoint ((var 0 0 3 0)
 (var 0 0 5 5)
 (const 0 0 2 0)
 (var 0.05 0.15 3 5)
 (var 0.002 0.005 3 1)
 (var 0.05 1.5 4 2))

 ((var 0 (1 0 left (var 0 270 2 3)))))
 (offsetElbow revoluteJoint ((var 0 0 3 2)

     (var 0 0 5 18)
     (const 0 0 2 0)
     (var -180 135 3 7)
     (const 0.003 0.01 3 3)
     (var 0.005 0.03 2 1))

      ((var 1 (2 0 left (var 0 270 2 0)))))
 (inlineRevolute2 revoluteJoint ((var 0 0 3 0)

 (var 0 0 5 5)
 (const 0 0 2 0)
 (var 0.05 0.15 3 2)
 (var 0.002 0.005 3 1)
 (var 0.05 1.5 4 4))

      ((var 1 (3 1 left (var 0 270 2 3)))))
 (offsetElbow revoluteJoint ((var 0 0 3 0)

     (var 0 0 5 16)
     (const 0 0 2 0)
     (var -180 135 3 7)
     (const 0.003 0.01 3 3)
     (var 0.005 0.03 2 1))

      ((var 0 (4 0 left (var 0 270 2 0)))))
 (simpleTool ((const 0.05 0.1 3 0))

     ()))
(var 0.3 2 4 9)
(var 0.5 10 4 15)

inlineRevolute2

offsetElbow

offsetElbow

simpleTool

(inlineRevolute2 revoluteJoint ((var 0 0 3 0)
 (var 0 0 5 5)
 (const 0 0 2 0)
 (var 0.05 0.15 3 5)
 (var 0.002 0.005 3 1)
 (var 0.05 1.5 4 2))

 ((var 0 (1 0 left (var 0 270 2 0)))))

module type component context

task parameters

attachment: connector 0 of parent goes to child module 1, connector 0; twist = 0 deg

parameter list

Figure 2.5:  Sample configuration and text description
A 4-DOF manipulator constructed from five parameterized modules and with two task
parameters is shown at top left, along with its text description (top right). Each module
is labeled with a bold number to show the correspondence between the robot and text.
At bottom is module 0, with labels detailing parts of the module description.

0

1

2

3

4

1

2

3

4

inlineRevolute2
0

motor
gearbox
material
diameter
wall thickness
length
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namic model.
While the mechanism graph is a tree, the configuration graph may not be: when

the graph is interpreted as mechanism, multiple connections referring to the same mod-
ule will result in multiple copies of that module and its children. This allows pieces of a
mechanism to be duplicated to preserve symmetry. For example, a hexapod robot would
have one base with 6 connectors, each of which is attached to the same module (the base
of a leg) in the configuration graph. Figure 2.7 shows an example of a free-flying robot
with two identical arms. Note that there are two connections from the second module to
the third; thus, the third module (and all its child modules) are duplicated, creating two
identical arms. Creating parallel mechanisms in Darwin2K can be done through the use
of constraints when dynamic simulation is used, or through manually-specified kinemat-
ic equations when kinematic simulation is used. The use of constraints will be discussed
in a later chapter.

Figure 2.6:  Configuration shown as modules and links
(a) shows the configuration from Figure 2.5 as a configuration graph, with modules
connected by attachments (arrows).
(b) shows the robot represented as a mechanism, with links connected by joints.
In this figure, the joint axes are represented by arrows, and the links have been
displaced along the joint axes for clarity. The root link of the mechanism is
indicated by the dashed arrow.

(a) modules (b) links

root link
22    Connecting modules: the Configuration Graph



Darwin2K Tutorial
2.3 displayCfg : Displaying and manipulating
configurations

When specifing a configuration graph, it is useful to be able to view the resulting
robot and interactively move its joints. The displayCfg program mentioned earlier is
used for this. Figure 2.8 shows the GUI control panel for displayCfg. The chain selector
and joint selector allow you to choose a joint (from the specified serial chain) to move with
the joint slider. You can also enter the value for a joint angle (or distance, in the case of
prismatic joints) with the joint angle input box. If you want to save a snapshot of the cur-
rent window, you can click the Save button. This will write two files: basename0.rgb
and basename0.iv , where basename is the name specified in the Output basename
section of the GUI and 0 is the frame number, also specified in the GUI. Clicking Save
increments the frame number, so that you don’t have to enter a separate basename or
frame number by hand each time you save an image. The .rgb file is written in the SGI

Figure 2.7:  Configuration graph for a two-armed robot
At top is a symbolic view of a configuration graph. Each node is a module, and each edge
is a connection between modules. The base module (at the left) has two outgoing
connections to a joint module; when the graph is parsed to create a description of the
robot’s links and joints, the subgraph rooted at the joint module is duplicated, thus
preserving symmetry.

instantiation
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file format, while the .iv file is an Inventor file that can be later viewed with ivview (on
an SGI or other platform with Inventor installed) or with a web browser capable of view-
ing VRML files.

By default, displayCfg looks for a file called disp.p containing values for var-
ious display settings (e.g. whether to use a high- or low-detail display, or where the initial
viewpoint should be) and for componentDB (the componentDB file). Alternate filenames
for these files can be specified on the command line after the configuration filename. The
componentDB file format was described earlier, but disp.p is written in another format
called the p-file format. This format looks quite similar to the C language and is used
throughout Darwin2K for specifying values for internal program variables.

Figure 2.9 shows a sample disp.p file consists of a number of variable defini-
tions. The supported variable types are int , float , double , char , char[] , and enum,

Figure 2.8: displayCfg  GUI

serial chain
selector

joint selector

cfg filename

joint angle
slider

joint angle
input

int lowDetailDisplay = 1;
int displayWorldAxes = 0;
int displayFreeAxes = 0;
int displayPartAxes = 0;
int displayUsedAxes = 0;
int lowDetailTubeNumSides = 32;

#synIvDisplay
float backgroundR = 1.0;
float backgroundG = 1.0;
float backgroundB = 1.0;

Figure 2.9: disp.p
Shown here is disp.p, the p-file used by displayCfg. The p-file format is a list of variable
assignments in a C-like syntax.
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and they are specified in the same manner as in C. Each program looks for certain vari-
ables in its p-file; some variables are optional, while others are required. displayCfg has
no required variables. The variables listed in Figure 2.9 affect the appearance of configu-
rations in displayCfg : lowDetailDisplay determines whether a low- or high-detail
display should be used; the next four variables indicate whether various coordinate axes
should be shown; and lowDetailTubeNumSides specifies the number of facets to use
when rendering parts with cylindrical geometry. The only line in the file that doesn’t
quite look like C is “#synIvDisplay ”, which is a context specifier: it means that the fol-
lowing variables should be grouped together and should only be readable by software
objects asking for synIvDisplay variables specifically. Later, when we are building
simulators, we will see that each software component (controller, payload model, etc.)
has its own section in the p-file, allowing each component to be easily and consistently
configured. In this case, the variables under #synIvDisplay are used by the software
object that actually renders the robot, and the three variables shown specify the back-
ground color of the display. If you click on the Print Viewpoint button in display-
Cfg , you will see  output that looks something like this:

int VPreadParams = 1;
int VPviewportMapping = 3;
int VPwidgetSizeX = 551;
int VPwidgetSizeY = 588;
float VPpositionX = -10.5446;
...

If you cut-and-paste this into disp.p under the #synIvDisplay section, then the next
time you start displayCfg the viewpoint (including window size) will be restored to
whatever the current viewpoint is.

2.4 Summary

In this chapter, we saw how to describe robots and view them with Darwin2K. Ro-
bots are composed of parameterized modules, and can be connected together to form con-
figuration graphs. Module parameters can represent continuous properties like
dimensions, or can select from a number of discrete choices such as components. Compo-
nent properties are specified through the componentDB file, as are lists of allowable com-
ponents for modules’ selection parameters. We also saw the p-file format, used
throughout Darwin2K for specifying interal program variables.
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3 Using the Synthesizer
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4 Simulation
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5 Reference

This section describes the usage of Darwin2K’s programs and software objects.
For programs, the command-line arguments and p-file variables are detailed; for soft-
ware objects, the behavior and interfaces are given. One might say that this is and “evolv-
ing” document, but at the present time “incomplete” is probably a more accurate
description.

5.1 p-files

p-files contain user-specified runtime values for Darwin2K’s programs. p-files
look very much like lists of C variable definitions. For example, part of a p-file might look
like this:

char evalType[80] = "walkerEvaluator";
char componentDBFilename[80] = "p/walker/walkerDB";

#evaluator
int numComponents = 6;
double maxRealtime = 1000.0;

In this case, most of the lines specify values of various types: the string evalType
should have a value “walkerEvaluator ”, and so on. Different programs read different
variables from p-files; these are detailed in the section for each program. When describing
p-file variables, the following conventions are used:

• plain - the variable is optional and need not be specified
• bold - the variable is required
• italic - the variable is optional and is also conditional. It is read depend-

ing on the value of another variable, and need not be specified.
• bold italic - the variable is required and is conditional: when another

variable has a certain value, this variable must be specified.

The other line in the p-file above is “#evaluator ”, which denotes the beginning
of a new section or context. Typically, a p-file will contain information for a number of
different software objects, and each object will have its own section. Depending on the
program, the label for each section may be a classname or a predefined string plus a num-
ber number (for example #metric2  or #evComponent16 ).

Note that when describing the p-file variable for each software object in this sec-
tion, only those variables that are specifically introduced by a class are listed; the vari-
ables read by a class’s base class are listed only under the base class.
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5.2 Class and program reference

This section contains documentation on the following classes and programs:

pm - the population manager
evaluator - configuration evaluation program
evStandalone - standalone configuration evaluation program

synObject
pmComponent

cfgFilter
dofFilter
endPointFilter
moduleRedundancyFilter

evaluator
pathEvaluator
walkerEvaluator
ffEvaluator

evComponent
collisionDetector
genericPath

path
relativePath

payload
panelSection

DEsolver
rungeKutta4

controller
sriController

ffController
pidController
roverController
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pm - the population manager

The population manager pm is the center of Darwin2K’s synthesis capabilities. It
creates configurations, sends them to evaluator processes for performance assessment,
and uses the performance data to select above-average configurations to be reproduced.

Usage:

pm p-file

General setup variables

Variable Description Default value

int readPopulation when 1, the pm will read the initial population rather

than generating one.

-

char popFilename[] if readPopulation is 1, this variable specifies the filena-

me containing the initial population

-

int readFitness if readPopulation is 1, this variable specifies whether fit-

ness information for each configuration is stored in the

population file.

1

int reevaluatePopulation if readPopulation is 1, this variable determines whether

or not the configurations in the initial population will be

re-evaluated (i.e. sent to evaluators for fitness evalua-

tions)

0

int saveAndQuitAfterCreation when 1, the pm will generate an initial population, save

it to the file ‘initPop.l’, and exit without performing any

optimization.

0

int saveAfterDecimation when 1, the pm will save the population to a file ‘init.l’

after decimation takes place.

1

int creationTimeout the number of configurations the pm will create while

attempting to generate the initial population before giv-

ing up.

10*initPopSize

int debugLimit when positive, forces the pm to exit the optimization

loop after the indicated number of configurations have

been evaluated.

-1

int minLimit when using Requirement Prioritization, this variable

specifies the minimum number of configurations that

are evaluated after generating the first configuration

that is feasible according to the current requirement

group.

max(2000,

20*popSize)
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int fillAtStartOfGroup when using Requirement Prioritization, this variable in-

dicates whether or not the population should be filled

with randomly-generated configurations after advanc-

ing to the next requirement group.

1

int preventDuplicates when 1, indicates that duplicate configurations (exact

copies of other configurations) should not be allowed

into the population.

1

int popSize the number of configurations in the population during

the optimization phase

100

int initPopSize the number of configurations initially generated. After

evaluating the initial population, configurations are sto-

chastically selected for deletion until the population is of

the size indicated by popSize.

1000

int maxIndividuals When using requirement prioritization, the pm will con-

tinue generating configurations until the indicated num-

ber of evaluations have occured since advancing to the

current group of requirements. When not using require-

ment prioritization, or when stopAtMax is 1, the pm will

always stop after the specified number of evaluations

have been performed.

60000

int stageLimit When using requirement prioritization, the pm will con-

tinue to evaluate configurations until the indicated

number of evaluations have been performed since ad-

vancing to the current requirement group, or since satis-

fying the current requirement group.

20000

int stopAtMax Forces the pm to stop after the number of evaluations in-

dicated by maxIndividuals

0

int numTaskParams The number of task parameters included in each config-

uration.

-

char evalType[] The class name of the evaluator to be used for evaluating

configurations.

-

char evalParamFile[] The p-file for the evaluator. This filename should be ei-

ther an absolute filename or should be relative to the us-

er’s login directory, since only the filename (rather than

the file itself) is sent to evaluator processes.

-

char componentDBFilename[] The componentDB file. This filename should be either

asbolute or relative to the user’s login directory.

-

char moduleDBFilename[] The module database file. This filename should be either

absolute or relative to the user’s login directory.

char kernelFilename[]
(or embryoFilename)

The kernel file. This filename should be either absolute

or relative to the user’s login directory.

Variable Description Default value
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Logging and data collection

Genetic Operators

Variable Description Default value

int logPopulation indicates whether the entire population should be writ-

ten (to pop.l)

1

int logAllOptimalSets indicates whether optimal sets should be written succes-

sive files (e.g. optimalNNNN.l) or should always be

written to optimal.l

0

int optimalLogInterval when logAllOptimalSets, this varaiable indicates the

number of evaluations between saving the optimal set to

disk.

100

int logInterval when logPopulation is 1, this variable determines

whether the population is always written to pop.l (log-

Interval <= 0) or to successive files (e.g. popNNNN.l,

where NNNN is a multiple of logInterval).

-1

Variable Description Default value

int doSubgraphFixing When commonality-preserving crossover is

being used (i.e. cpXoverRate > 0), this variable

determines whether or not subgraph fixing

should be performed.

1

int useAdaptiveMutation Indicates whether adaptive mutation should

be used.

0

double adaptiveMutationTimeConstant When adaptive mutation is used, this number

multiplies the population size to determine the

time constant of the exponential function de-

termining total mutation probability.

5

int reuseEmbryos When fillAtStartOfGroup is 1, this variable de-

termines whether or not the embryos should

be randomly chosen as parents for new config-

urations.

0

double cpXoverRate Commonality-preserving crossover rate. The

three crossover rates should sum to a number

between 0 and 1, and the duplication rate is

one minus this sum.

0.1

double xoverRate Subgraph crossover rate. 0.7

double paramXoverRate Parameter crossover rate. 0.15

double paramMutationRate Parameter mutation rate. 0.02

double attMutationRate Attachment mutation rate. 0.01

double replacementRate Um....module replacement rate? 0.01
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Metrics and selection

The following variables must be specified for each metric, and are contained in sections
named ’#metric<num>’ where <num> is a number from 0 to numMetrics-1.

double insertionRate module insertion rate 0.01

double deletionRate module deletion rate 0.01

double permuationRate module permuation rate 0.01

Variable Description Default value

int numMetrics The number of metrics -

enum selectionMode One of {weightedSum, cdf, mdf, req }. req is the suggest-

ed value, though cdf is also useful. The other modes are

not recommended.

req

int newMetricSpec Indicates whether the new or old metric specification

format should be used. The old format is undocumented

and is only used for backwards compatibility.

1

int reqStartGroup when selectionMode is ‘req’, the pm automatically ad-

vances to the indicated requirement group. This is use-

ful when continuing a previous run.

0

char cdfFilename[] when selectionMode is ‘cdf’, this variable is used to de-

termine the name of the file containing the CDF defini-

tion.

-

char fdfFilename[] when selectionMode is ‘cdf’, this variable is used to de-

termine the name of the file containing theFDF defini-

tion.

-

Variable Description Default value

char name[] The class name of the metric -

enum mode For state-dependent metrics, this specifies the method

used to collapse the time-varying performance measure-

ments into a single metric. Legal values are MIN, MAX,

AVG, RMS (root-mean-square), and INTEGRAL.

-

double min Specifies the lower-bound to which raw metric values

are clipped.

-

double max Specifies the upper-bound to which raw metric values

are clipped.

-

Variable Description Default value
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Source file

pm/*

See also

pmComponent

double afdi The Adjusted Fitness Doubling Increment for the metric.

A benefical change in raw fitness of the specified

amount will result in a doubling of adjusted fitness. Ei-

ther this variable or scale (below) must be specified.

-

double scale The scale factor that is used to compute adjusted fitness

from standardized fitness as follows:

where s is the standardized fitness and a is the adjusted

fitness. Either this variable or afdi (above) must be spec-

ified.

ln(2)/afdi

int priority When requirement prioritization is being used, this vari-

able specifies the priority level of the metric.

-

char op[] When requirement prioritization is being used, this vari-

able specifies the comparison operator to use when test-

ing feasibility. Valid values are: ==, !=, <, <=, >=, >, and

NOP. The equality and inequality operators behave as in

C, while NOP indicates that there is no feasibility thresh-

old.

-

double thresh When requirement prioritization is used and op is not

equal to NOP, this variable specifies the acceptance

threshold for the metric.

-

Variable Description Default value

a escale s×=
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synObject

synObject is the abstract base class for all classes in Darwin2K that use runtime
typing. This allows objects of any class derived from synObject to be created at runtime
through Darwin2K’s synDB, a database providing a mapping from class names (repre-
sented as character strings) to constructors. While there is some overhead involved in de-
fining classes so that they will be properly accessed by the synDB, new classes can be
added through dynamic libraries and instantiated on the fly without recompiling
Darwin2K’s binaries.

The synDB capabilities make heavy use of macros, so that users defining new
classes can easily add the appropriate magic to get their classes working correctly. The
primary macros needed when writing a new class are:

MAKE_COVER_FUNCTIONS(classname) - declares the magic functions for
classes without explicity constructors or with constructors that have no
arguments

MAKE_ABSTRACT_COVER_FUNCTIONS(classname)- declares magic functions
for classes that are pure virtual

MAKE_COVER_FUNCTIONS_NO_CONS(classname)- declares magic functions
for classes whose constructors require arguments

These macros should be put in the class definition; for example

class exampleObj : public synObject {
public:
  MAKE_COVER_FUNCTIONS(exampleObj);
  DECLARE_PARENT_CLASS(synObject);
};

In this case, the new class does not have a constructor so the normal
MAKE_COVER_FUNCTIONSmacro is used. The DECLARE_PARENT_CLASSmacro is also
included, with the name of the parent class as the argument. This allows the full inherit-
ance of the object to be known at runtime. For classes with multiple inheritance, the mac-
ros

DECLARE_PARENT_CLASSES(class1, class2)
DECLARE_PARENT_CLASSES3(class1, class2, class3)

can be used. In addition to the macros described above, the source file (as opposed to
header file) for any new class should include the line

DEFINE_CLASS_ID(classname)

This defines an integer that is a static member of the class, and which contains a unique
ID number for the class. Finally, the macro
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ADD_DB_TYPE(baseClass, classname, initFunc)

adds the class’s copy() method to the synDB database. initFunc is a normal
function or a static member function, and if it is non-NULL then the database will call
initFunc once at program startup. Any class-specific initialization that needs to be per-
formed should thus be done by initFunc . This macro is normally used in initial-
izeUserEvalDB and initializeUserPMDB , functions which application-specific
dynamic libraries must define.

When the above macros are used, runtime typing can be performed using the mac-
ro

IS_OF_TYPE(obj, classname, derivedOK)

which returns 1 if obj is of the specified class, or if derivedOK is 1 and obj is derived
from the given class or is a member of it. All of these macros are defined in db/synMac-
ros.h .

Data memebers

int objectID  - a general-purpose ID that derived classes can use
int verboseLevel  - indicates the desired level of text output from the object

enum {
  SO_NONE = -1, ‘ // don’t print anything
  SO_ERRORS = 0, // only print errors
  SO_WARNINGS = 1, // errors, warnings
  SO_INFO = 2, // errors, warnings, occasional useful data
  SO_DEBUG = 3, // full output; lots of data spewed (every sim step)
  SO_ULTRASPEW = 4 // hope you have lots of free disk space
};

New methods

virtual ~synObject(void)  - a virtual destructor
virtual const char *className(void) const - (pure virtual) Returns a

character string containing the object’s class name
virtual synObject *copy(void)  - (pure virtual) Returns a new object that

is a copy of the current object. Thus, even if the type of an object derived
from synObject is unknown, one can always create a copy of it.

virtual int isOfType(int typeNum, int derivedOk) - returns 1 if the
object is of the specified type, or derived from the specified type if
derivedOk is 1.

Source file

db/synObject.h
db/synMacros.h
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pmComponent

pmComponent is the abstract base class for modular software components used by
the population manager. pmComponents read their initialization data from the pm’s p-
file. Currently there is only one class derived from pmComponent, the cfgFilter .

Derivation

pmComponent : synObject

New methods

int readParams(paramParser *p)

p-file variables

Source file

db/pmComponent.h

See also

pm - the population manager
cfgFilter

Variable Description Default value

int enabled Determines whether or not the pmComponent is

used. Note that this is actually read by the pm before

creating the pmComponent.

1

int verboseLevel Sets the level of text output. 1

(SO_WARNINGS)
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cfgFilter

The cfgFilter is an abstract base class implementing a generic filter used by the
pm to remove configurations that do not meet user-defined constraints. These constraints
are inherent properties of the configuration (e.g. number of degrees of freedom), as op-
posed to performance measurements that must be obtained through simulation.

Derivation

cfgFilter : pmComponent : synObject

New methods

int acceptable(configuration *cfg) - returns 1 if the configuration
passes the filter, 0 if not.

Source file

pm/cfgFilter.*

See also

pm - the population manager
pmComponent
dofFilter
endPointFilter
moduleRedundancyFilter
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dofFilter

The dofFilter is a cfgFilter that filters based on the number of degrees of
freedom. Configurations must have at least min degrees of freedom and at most max. The
number of degrees-of-freedom is calculated by using the numDOFs() method of each
module, rather than instantiating the configuration and counting the actual number of
joints. This computes the number of effective degrees of freedom rather than the number
of actual joints, which is important when modules have kinematic or dynamic con-
straints, or what a module has several completely redundant degrees of freedom (e.g. a
prismatic joint with several telescoping sections). Also note that the 6 DOFs for free-flying
bases (including the virtualBase ) are counted by the dofFilter.

Derivation

dofFilter : cfgFilter : pmComponent : synObject

New methods

None.

p-file variables

Source file

pm/cfgFilter.*

See also

pm - the population manager
cfgFilter

Variable Description Default value

int min The minimum number of degrees of freedom for ac-

ceptable configurations.

-

int max The minimum number of degrees of freedom for ac-

ceptable configurations.

-
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endPointFilter

The endPointFilter filters based on the number of end effectors. Robots must
have at least min and at most max end effectors to be considered acceptable by this filter.

Derivation

endPointFilter : cfgFilter : pmComponent : synObject

New methods

None.

p-file variables

Source file

pm/cfgFilter.*

See also

pm - the population manager
cfgFilter

Variable Description Default value

int min The minimum number of end effectors for acceptable

configurations.

-

int max The minimum number of end effectors for acceptable

configurations.

-
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moduleRedundancyFilter

The moduleRedundancyFilter is a cfgFilter that filters based on adjacent modules
in the configuration graph. Its original purpose was to eliminate configurations that have
two sequential degrees of freedom that are kinematically identical, such as two inlineR-
evolute joint modules connected in series. More generally, the moduleRedundancyFilter
allows the designer to disallow connections between certain module types.

Derivation

moduleRedundancyFilter : cfgFilter : pmComponent : synObject

New methods

int pairAcceptable(int moduleID1, int connID1,
int moduleID2, int connID2) const

p-file variables

Source file

pm/cfgFilter .*

See also

pm - the population manager
cfgFilter

Variable Description Default value

int numIllegalPairs The number of disallowed pairs of modules -

char moduleName1_<i>[] The class name of the first module in the ith pair of il-

legal modules.

-

char moduleName2_<i>[] The class name of the second module -

int connectorID1_<i> The connector ID for the connector on the first mod-

ule that should not be attached to the second module.

A connector ID of -1 indicates that no connection is

allowed.

-1

int connectorID2_<i> The connectorID for the connector on the second

module.

-1
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evaluator - configuration evaluation program
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evStandalone - standalone configuration evaluation
program
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evaluator

At the highest level, the evaluator performs initialization for simulation compo-
nents (called evComponents ) and provides high-level simulation control. The evalua-
tor class is a base class for other evaluators, and does not include any type of evaluation
itself -- other classes such as the pathEvaluator can be derived from it to meet the
needs of specific task representations. The evaluator defines the interface between the
simulation internals and the rest of Darwin2K’s software, and also keeps track of the con-
figuration being evaluated and the metrics and evComponents being used for simula-
tion. The evaluator also parses the initialization file to read its own parameters and to
determine which evComponents are required, and then passes component-specific in-
formation from the file to each evComponent . If any task parameters are included in the
optimization process, the evaluator passes each task parameter to its corresponding ev-
Component (or interprets the task parameter itself, if one of the evaluator’s variables
was specified as a task parameter). The evaluator also calls the appropriate initializa-
tion and cleanup functions for each configuration being evaluated and performs other
bookkeeping functions. In addition to these functions, classes derived from the evaluator
also contain code for controlling the simulation: for example, at each time step in a simu-
lation the pathEvaluator tells a DEsolver to query a controller for a command
and then compute the robot’s state at the next time step, then checks if any collisions have
occurred using the collisionDetector , and determines if the robot has completed the
task by reaching the end of the current path . In many cases, the designer will need to de-
rive a task-specific class from evaluator or one of it subclasses. The methods listed un-
der “Core methods” below are normally provided by derived classes; other virtual
functions (such as the display functions) can be overridden, but the default methods for
the evaluator class will normally be suitable for derived classes as well. Other functions
are convenience functions that make accessing data members easier (such as getEvCom-
ponent() ) or that are useful for derived classes (e.g. checkTimeout() ).

Normally, the program will create an evaluator (either directly, or through the
createEvaluatorFromFile() static method) and initialization will be performed in
a standard manner. Thus, derived classes should expect their methods to be called in the
following order:

readParams(p-file)  - reads class-specific parameters from a p-file.
postComponentInit()  - called after all evComponents have been initialized

and for each configuration that is evaluated, the following methods will be called:

init(cfg)  - performs any configuration-specific initialization such as memory
allocation

setVariables(taskParams)  - reads the values of any task parameters from
the supplied list of parameters. Task parameters override values from the
p-file.

evaluateConfiguration()  - evaluates the configuration; this is the main
simulation loop
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cleanup()  - frees any dynamic memory associated with the configuration.

NOTE: The methods readParams , postComponentInit , init , setVari-
ables , and cleanup must call the base class’s corresponding method, and each of these
methods should fail (i.e. return 0) if the base class’s method fails. init and postCompo-
nentInit () should call the corresponding base class method before doing any class-spe-
cific initialization; cleanup should call the corresponding method after class-specific
operations; and the order for the other methods is unimportant.

The p-file for the evaluator and evComponents is usually parsed by create-
EvaluatorFromFile . This static method creates an evaluator of the type specified in
the p-file, creates evComponents also as specified in the file, and calls all evaluator
and evComponent initialization methods that are not specific to the configuration being
evaluated (i.e. readParams is called, but init is not). Several conventions should be fol-
lowed in the p-file:

• The variables specific to each evaluator class should be defined in a
parser context with a label of #classname , where classname is the
name of the evaluator class. For example, a pathEvaluator would
actually require two sections in the file, one starting with #evaluator
and containing evaluator -specific variables and one starting with
#pathEvaluator .

• The p-file variable numComponents (int the evaluator context) indi-
cates how many evComponents are defined in the file. Each evCompo-

nent ’s variables are stored in a separate section, with the Nth

evComponents variables in the section labeled #evComponent N. The
classname for each component is specified by a string variable called
class , and an optional integer variable enabled determines whether
or not the evComponent  is created and initialized.

• The string variable evalType is read directly by createEvaluatorFrom-
File and is thus part of the global context (i.e. it comes before the first
context label).

Derivation

evaluator : synObject

Data members

configuration *cfg  - the configuration currently being evaluated
ptrList evComponents  - a list of evComponents.
ptrList metrics  - a list of metrics
double dt  - simulation stepsize in seconds
double maxRealtime  - maximum elapsed time (wall clock time), in seconds
int startPaused  - 1 if the simulation should initially be paused
double simTimeout  - maximum elapsed simulation time, in seconds
ulong startSecs  - wall-clock simulation start time, in seconds
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double currentTime  - current elapsed simulated time, in seconds

New methods

Core methods - usually provided by subclasses
virtual int readParams(const char *fname)  - reads class-specific

parameters from the given p-file. Returns 1 on success, 0 on failure. This
function should call the base class’s readParams() method, and should
return 0 if the base class’s readParams() fails. This method should call
EVparser.pushContext( classname)  before parsing class-specific
variables, and should call EVparser.popContext()  after parsing class-
specific variables.

virtual int init(configuration *cfg)  - allocates memory and sets
initial configuration state. This method should first call the base class’s init()
method, and should return 0.

virtual int cleanup(void)  - called after evaluateConfiguration to free
memory allocated in init()

virtual int setVariables(const ptrList *taskParams)  -
setVariables is called after init(cfg)

virtual int evaluateConfiguration(void) - evaluates the configuration
set by init()

virtual int postComponentInit(void)  - called at the end of
initializeComponents()

Convenience functions
evComponent *getEvComponent(int i)  - returns the ith evComponent.
evComponent *getEvComponentByLabel(const char *label) - returns the first

evComponent that has the given label.
evComponent *getEvComponentByClassID(int classID, int

 derivedOk = 1)
returns the first evComponent  with the given classID or derived from the
given classID if derivedOk  is 1. Normally used through the
getEvComponentsByClassName  macro.

int getEvComponentsByClassID(int classID, ptrList *l,
int derivedOk = 1)

adds all evComponents with the given classID (or derived from the given
classID if derivedOk  is 1) to l, and returns the number of appropriate
evComponents  found. Normally used through the
getEvComponentsByClassName  macro.

metric *getMetric(int i)  - returns the ith metric.
metric *getMetricByName(const char *className)  - returns the first

metric found that has the given classname.

taskParamRecord *getTaskParam(int i)  - returns the ith task parameter
record.

int numTaskParams(void)  - returns the number of task parameters records.
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Macros
#define getEvComponentByClassName(classname, derivedOk)  -

returns the first evComponent found that has the given classname, or that
is derived from the specified class if derivedOk  is 1.

#define getEvComponentsByClassName(classname, l, derivedOk) - adds all
evComponents

#define GET_METRIC_BY_NAME(name) ((name *)getMetricByName(#name));

Display methods
virtual int usingDisplay(void)  - returns 1 if a display is being used
virtual int parseDisplayVariables(paramParser *p)  - parses

display-related variables.
virtual void setPauseState(int paused)  - pauses and unpauses the

simulation
virtual void initDisplay(void)  - initializes display, including opening

windows
virtual int updateDisplay(void)  - updates display
virtual void cleanupDisplay(void)  - closes display and frees any

associated memory

GUImethods
virtual void initGUI(void)  - initializes separate GUI window, if any
virtual int updateGUI(void ) - updates GUI state, including checking for

and handling any window manager events
virtual void closeGUI(void)  - closes the GUI and frees any associated

memory

Other methods
static evaluator *createEvaluatorFromFile(const char *fname) -

creates an evaluator and evComponents from the descriptions in the given
p-file and performs all evaluator and evComponent initialization.

void resetTimer(void)  - resets the timer measuring elapsed CPU time
int checkTimeout(void)  - returns 1 if the elapsed CPU time for the current

evaluation is greater than simTimeout.
void printMetrics(FILE *fp) - prints the names and values of all metrics.

p-file variables

Variable Description Default value

int verboseLevel Sets the level of text output. 1 (SO_WARNINGS)

int numComponents Indicates the number of evComponents

to be described in the file

-
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#evComponent<N> This is a parser context rather than a vari-

able, and denotes the beginning of the p-

file section for the Nth evComponent.

int numTaskParams The number of task parameters to be in-

cluded with each configuration.

0

char taskParamVariableName<N>[] The variable name for the Nth task param-

eter, as expected by the evaluator or ev-

Component’s setVariable() method.

-

char taskParamComponentLabel<N>[] The label of the evComponent which the

Nth task parameter is for. Omit this vari-

able if the task parameter is for the evalu-

ator.

-

double maxRealtime maximum elapsed time (wall clock time),

in seconds

30

int startPaused 1 if the simulation should initially be

paused

0

double dt simulation stepsize in seconds

double simTimeout maximum elapsed simulation time, in

seconds

int preventInitialPose When 1, indicates that any initial joint

values specified by modules should be ig-

nored. Provided for backwards compati-

bility. Defined in cfg/configuration.cxx.

int lowDetailTubeNumSides The number of facets used for low-detail

representations of cylinders. Defined in

modules/componentJoints.cxx

int constraintVerboseLevel The verbose level for constrained dynam-

ic simulation code. Defined in cfg/con-

straint.cxx

1 (SO_WARNINGS)

int patchVerboseLevel The verbose level for terrain contact patch

code. Defined in terrain/patch.cxx

1 (SO_WARNINGS)

int patchAverageNormals See terrain/patch.cxx

int intersectVerboseLevel The verbose level for polyhedron inter-

section calculation code. See collision/in-

tersect.cxx

1 (SO_WARNINGS)

int cfgVerboseLevel Verbose level for general configuration-

related code. See cfg/configuration.cxx

1 (SO_WARNINGS)

int cfgDynamicVerboseLevel Verbose level for dynamic simulation

code. See cfg/dynamics.cxx

1 (SO_WARNINGS)

Variable Description Default value
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Source file

eval/evaluator*

See also

pm - the population manager
evComponent

int bombOnError When 1, any error (i.e. a call to logError())

will cause a core-dump so that post-mor-

tem debugging can be performed.

0

int randomSeed When specified, this is used as the arg-

ment to srand48(). When not specified,

srand48() is not called.

-

Variable Description Default value
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pathEvaluator

The pathEvaluator represents tasks as a series of end-effector trajectories, op-
tionally with obstacles in the workspace and payloads to be moved along the trajectories.
In the simplest case, a fixed-base manipulator might follow a single trajectory; a more
complex task might require a mobile robot with multiple end-effectors to move between
base poses and follow paths with one or both manipulators at each pose. To account for
this variation, the trajectories (represented as path or relativePath objects) are orga-
nized in path groups: each path group can contain a trajectory for each of the robot’s end-
effectors, and can have a different pose for the robot’s base. If multiple paths are specified
in a path group, the corresponding manipulators follow them simultaneously and all
paths must be completed before moving on to the next path group. The pathEvaluator
requires several evComponents to be specified in the initialization files: a DEsolver for
integrating robot state, an sriController for controlling the robot, and one or more
paths . Additionally, the pathEvaluator can use a motionPlanner to plan paths be-
tween path groups for the robot’s base, and a collisionDetector to check for colli-
sions during simulation.

The initial position and orientation of the robot’s base can be specified in the ini-
tialization file, or can be included as task parameters so that the base position of a manip-
ulator can be optimized. However, when using a mobile base a different base location
may be required for each path group, and different mobile robots may require different
base poses in order to reach the same path since they may have different manipulator ki-
nematics. The pathEvaluator uses the sriController in a two-stage process to de-
termine the base pose of mobile robots for each path group: at first, the robot’s base is
allowed to move freely (i.e. without nonholonomic constraints), and then all of the robot’s
degrees of freedom (including the base) are moved. If we were to initially use all of the
robot’s degrees of freedom, then the serial chains might end up at the edge of their work-
spaces. Instead, the pathEvaluator first allows the base to move freely in 3 dimensions
(or in the plane for a planar base) while holding all serial chains fixed. Once the robot can-
not move any closer to the start of the paths in the path group, serial chain motions are
enabled but with a high cost (implemented by scaling columns in the Jacobian corre-
sponding to serial-chain DOFs), forcing the robot to move the base instead of the serial
chains if possible. During this second stage, the robot base is still able to move freely. If
the robot still cannot reach the initial points in the paths, we know it cannot complete the
task. If it does find a successful starting pose, the base motion mode is returned to normal
(i.e. non-holonomic constraints are enforced, for example) and the serial chain cost is re-
turned to normal; this is the normal operating mode for the robot.

If the task requires the robot to move between several base poses, the aforemen-
tioned method is used to compute each initial base pose before the actual evaluation takes
place. During evaluation, the sriController can be used to move holonomic robots
between base poses if there are no obstacles present. When a robot with a nonholonomic
base moves between base poses, or if there are obstacles in the workspace, the robot can
be controlled using the motionPlanner ; however, note that the motionPlanner class
has not been used in several years and likely suffers from bit-rot.
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Derivation

pathEvaluator : evaluator : synObject

Data members

evComponents  used by the pathEvaluator.  Listed with each variable is the
label or class used to select the appropriate evComponent from those
defined in the p-file.

collisionDetector *cd  - the collision detector. Labeled
“collisionDetector ”, or of type of collisionDetector. (Optional)

motionPlanner *mp - the motion planner; of type motionPlanner . (Optional)
sriController *ctrl  - the controller to use for trajectory following; of type

sriController
DEsolver *dynSolver - the DE solver used during dynamic simulation; labeled

“dynamicSolver”. Either dynamicSolver or kinematicSolver must be
specified in the p-file

DEsolver *kinSolver  - the DE solver used during kinematic simulation;
labeled “kinematicSolver ”.

DEsolver *mpSolver  - the DE solver used during planned motions; labeled
“plannerSolver ”. (Optional; kinematicSolver  is used if
plannerSolver  is not defined.)

ptrList paths  - a list of path groups; each path group is a ptrList of paths for
the robot’s end effectors.

variables describing path groups and behavior
int numBasePoses - number of path groups (each of which may have a different

base pose for the robot, if the robot has a mobile base)
int numEndPoints  - maximum number of paths in each group
int doBaseMoves  - 1 if the motions between path groups should be simulated
int baseFixed  - 1 if the base is fixed. 0 indicates that base poses for each path

group should be computed.

int useDynamicSimulation  - indicates whether dynamic or kinematic
simulation should be used.

double baseCost  - cost of base motions during normal movements
double simChainCost - cost of serial chain motions during normal movements
double chainCost - cost of serial chain motions while finding the base pose for

each path group
double posThresh[3]  - the linear velocity thresholds (in m/s) used for

deciding when the robot has stopped moving during each of the three
phases.

double orientationThresh[3]  - angular velocity thresholds (in rad/s) for
deciding when the robot has stopped moving during each of the three
phases.

triple origin  - the initial position of the origin of the robot’s base link
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quaternion originOrientation  - the initial orientation of the robot’s base
link

vector **startState - array of vectors containing the computed starting pose
for each path group

double **basePose  - the pose of the base for each path group; used by the
motionPlanner

New methods

int findBasePoses(void)  - if a robot has a mobile base, this method
computes a starting pose for each path group by first moving on the robot’s
base, then moving the robot’s chains (though with a high cost) until the
robot’s end effectors are at the start of their respective paths.

genericPath *getPath(int whichPose, int i) - returns the ith path for
the path group indicated by whichPose .

int numPaths(int whichPose) - returns the number of paths in the indicated
path group.

p-file variables

Task parameters

Variable Description Default value

int useDynamicSimulation See ‘Data members’ above -

int numEndPoints See ‘Data members’ above -

int numBasePoses See ‘Data members’ above -

int doBaseMoves See ‘Data members’ above -

int baseFixed See ‘Data members’ above 0

double baseCost See ‘Data members’ above 1.0

double simChainCost See ‘Data members’ above 1.0

double chainCost See ‘Data members’ above 1.0

double posThresh{0,1,2} See ‘Data members’ above 0.1, 0.001, 0.001

double orientationThresh{0,1,2} See ‘Data members’ above 1, 0.1, 0.01 * π/180

double originPos{X,Y,Z} See ‘Data members’ above {0, 0, 0}

double originOrientation{R,I,J,K} See ‘Data members’ above {1, 0, 0, 0}

Variable Description

double originPos{X,Y,Z} See ‘Data members’ above
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Source file

eval/pathEvaluator.*

See also

evaluator
evComponent

double originOrientation{R,I,J,K} See ‘Data members’ above

double originHeading Rotation about z axis (up) for origin; used in place of originOrientation.

Variable Description
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walkerEvaluator

The walkerEvaluator simulates a robot moving along a truss in a zero-gravity
environment. The task involves walking along one segment (rod) of a truss, moving to a
perpendicular rod, moving to a third rod, then rotating about the rod and positioning one
end effector beneath a truss junction for inspection purposes. The class is derived from
the pathEvaluator , as it shares many of the same simulation needs; however, the
pathEvaluator ’s path groups and base-pose computation code are not used. Instead,
the walkerEvaluator uses several evComponents and specialized classes to generate
trajectories for the robot. The panelSection represents a triangular solar panel backed
by a truss, which the robot walks along. The trussPath class computes a series of tra-
jectories (each stored as a relativePath ) that represent a hand-over-hand gait from one
end of a truss rod to the other. The trussPath has several parameters determining the
geometry of the gait; these parameters are set by the walkerEvaluator , which in turn
obtains their values from the p-file and from a configuration’s task parameters. The
walkerEvaluator (rather than the trussPath ) computes the transition paths between
truss segments, as well as the final inspection path.

Derivation

walkerEvaluator : pathEvaluator : evaluator : synObject

Data members

double pathTimeout  - maximum simulation time allowed for each path
double walkingWeight  - the relative importance of the walking phase of the

task when computing task completion.
double transitionWeight  - the relative importance of each phase of the truss

transition portion of the task when computing task completion.
double transitionDist  - the distance from the end of the rod for the final

grasp point along a segment.
double inspectionStandoff - the distance from the truss junction to the TCP

during the inspection phase.
double stride, hOffset, vOffset, approachAngle, approachDist,

viaTol, tol, vTol, angleTol  - gait parameters; see Figure 5.40 in
section 5.6 of Darwin2K: An Evolutionary Approach to Automated Design for
Robotics for descriptions of these.

int firstGraspPoint  - determines which gripper the robot initially uses to
grab the truss.

int phase - the current phase of the gait; 0 indicates that the distal link is moving,
and 1 indicates that the base link is moving.

int stopAfterWalking  - determines whether or not the task includes the
transition phase or only the walking phase.
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int computeLinkPath  - determines whether the relativePath’s
computeLinkPath  variable is 1 or 0 when moving the base link of the
robot. Should be 1 for new development, and 0 when running old test cases.

panelSection *truss  - the truss
ffController *ffc  - the controller used during simulation
relativePath *p  - the relativePath used for all trajectories. The path’s

waypoints are set by the trussPath, and by several methods described
below

triple trussInitialX  - the initial position of the panelSection’s origin.
quaternion trussInitialQ  - the initial orientation of the panelSection.
endPointRec *fixedPt, *movingPt  - the end effectors that are currently

fixed and moving, respectively.
endPointRec, *baseEndPt, *toolEndPt - the end effectors on the base and

distal links of the robot, respectively.

New methods

void updatePhase(int newPhase)  - sets phase , fixedPt , and movingPt
based on newPhase .

int walkAlongTruss(trussPath *tp, int doInitialMove) - simulates
the robot walking along the truss, using the supplied trussPath  to
generate gait trajectories. If doInitialMove  is 1, then the robot will first
grasp the truss with both grippers, with a separation of 0.6m between
grippers. Otherwise, the robot will immediately begin walking from its
current pose. Currently, walkAlongTruss  is always called with
doInitialMove  set to 1.

int followPath(relativePath *p, int useDynamics = 1, int
useMetrics = 1) -

void initializeCfgAndTrussPoses(void)  - Sets the initial pose of the
truss and of the configuration so that the gripper indicated by
firstGraspPoint  is grasping the truss rod 0.3m from its beginning.

void initializePath(relativePath *p, int newPhase)  -
int initializeTrussPath(relativePath *p,trussPath *tp,

int newPhase)  - computes a trajectory for the
next gait cycle and assigns the trajectory to the appropriate end effector.

int initializeTransitionPath(relativePath *p, int newPhase,
int type, int side, double idx,
double l, double twist,
double roll) - computes a trajectory for

the gripper indicated by newPhase  to move to the position given by (l,
twist, roll ) on the truss rod indicated by {type, side, idx }. See
panelSection  for interpretation of the parameters.

int initializeRotationPath(relativePath *p ) - computes a trajectory
causing the robot to rotate 180 degrees about the current truss segment and
assigns the trajectory to the appropriate end effector.
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int initializeInspectionPath(relativePath *p)  - computes a
trajectory for the inspection phase of the task and assigns it to the
appropriate end effector.

void convertToRootCoords(triple &p, quaternion &q)  - converts p
and q from a via point for the base link to a via point for the distal link. This
allows trajectories to always be computed in world coordinates, and then
transformed appropriately so that the base link can move along the
trajectory.

p-file variables

Note that although the walkerEvaluator is derived from the pathEvaluator ,
originPos and originOrientation are the only p-file variables from pathEvaluator used by
walkerEvaluator. While values must still be supplied for the other required pathEval-
uator  p-file variables, the values are not used.

Variable Description Default value

double walkingWeight See "Data members" above.

double transitionWeight See "Data members" above.

double approachDist See "Data members" above.

double transitionDist See "Data members" above.

double inspectionStandoff See "Data members" above.

double stride See "Data members" above.

double viaTol See "Data members" above.

double angleTol See "Data members" above.

double tol See "Data members" above.

double vTol See "Data members" above.

double hOffset See "Data members" above.

double vOffset See "Data members" above.

double approachAngle See "Data members" above.

double pathTimeout See "Data members" above.

int firstGraspPoint See "Data members" above. Must be 0 or 1.

int computeLinkPath See "Data members" above. 0

int stopAfterWalking See "Data members" above. 0
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Task parameters

Source file

apl/walker/walkerEval.*

Dynamic Libraries

libsynPMWalker.so
libsynEvalWalker.so
libsynEvalWalkerD.so

See also

evaluator
pathEvaluator
evComponent
panelSection

Variable Description

double approachDist See "Data members" above.

double transitionDist See "Data members" above.

double inspectionStandoff See "Data members" above.

double stride See "Data members" above.

double viaTol See "Data members" above.

double angleTol See "Data members" above.

double tol See "Data members" above.

double vTol See "Data members" above.

double hOffset See "Data members" above.

double vOffset See "Data members" above.

double approachAngle See "Data members" above.

int firstGraspPoint See "Data members" above. Only the least significant bit of the param-

eter’s ival is used.

int computeLinkPath See "Data members" above. Only the least significant bit of the param-

eter’s ival is used.
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ffEvaluator

Derivation

ffEvaluator : pathEvaluator : evaluator : synObject

Data members

New methods

p-file variables

Task parameters

Source file

apl/ff/ffEvaluator.*

See also

evaluator
pathEvaluator
evComponent
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evComponent

The evComponent class is a base class for modular simulation objects and capabil-
ities such as trajectories, controllers, payloads, and collision detection algorithms. The ev-
Components’ modular nature and standardized interface allows simulation capabilities
to be specified at runtime through the use of setup files, rather than requiring a simulation
to be hard-coded.

The evaluator class provides bookkeeping and high-level simulation control, but
relies entirely on evComponents for detailed simulation algorithms. The evaluator calls
each evComponent’s methods in a standard order, allowing subclasses of evComponent
to perform appropriate initialization and interface with the evaluator and with other ev-
Components in a regular manner. The evComponent methods are called as follows:

int readParams(paramParser *parser) - called immediately after creating the
evComponent

int evInit(evaluator *ev) - called after all evComponents have been created;
evComponents can use ev->getEvComponent...() to find other
evComponents for interfacing.

The following methods are called each time a configuration is evaluated:

int init(configuration *cfg)  - before simulation
int setVariables(ptrList *taskParamRecs)  - after init, before

simulation
int cleanup() - after simulation, before the configuration is deleted.

Subclasses of evComponent will usually override these virtual functions and oth-
ers listed under "New methods" below. The argument to setVariables () is a ptrList
containing pointers to taskParamRecords . The members of the taskParamRecord
that are useful to the evComponent  are:

const char *varName  - the name of the variable represented by the task
parameter

param *p - the value of the variable. evComponents can use either the integer
value (p->ival ) or real value (p->val ).

Finally, the evComponent defines another virtual function, update (). This meth-
od is called at each simulation time step, allowing the evComponent to continuously up-
date state variables or perform other simulation needs.

Derivation

evComponent : synObject

Data members
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evaluator *ev  - the evaluator , passed as an argument to evInit ()
configuration *cfg  - the configuration currently being simulated
const char *label - a symbolic label (possibly NULL), normally read from the

p-file
int active  - indicates whether the evComponent  is currently being used. The

update () method of the evComponent  will not be called if active  is 0.

New methods

virtual int readParams(paramParser *parser) - reads parameters that
are independent of each configuration. In derived classes, this method
should call the base class’s readParams() method, and should return 0 if
the base class’s method fails. Returns 1 on success, 0 on failure.

virtual int setVariables(const ptrList *taskParamRecs)  - reads
value for variable indicated by varName  from parameter p. In derived
classes, this method should call the base class’s setVariables()
method, and should return 0 if the base class’s method fails. Returns 1 on
success, 0 on failure.

virtual int evInit(evaluator *Ev)  - Performs initialization dependent
on ev . This method should call base class’s evInit () function before
performing class-specific initialization, and should return 0 if the base
class’s method fails. This function is called once after all evComponents
have been created, and allows evComponents  to interface to each other
(since ev  contains a list of evComponents ).

virtual int init(configuration *Cfg)  - Performs initialization
dependent on cfg . This function is called each time a new configuration is
evaluated. In derived classes, this should call base class’s init () function
before performing class-specific initialization, and should return 0 if the base
class’s method fails. Returns 1 on success, 0 on failure.

virtual int cleanup(void)  - Performs configuration-dependent cleanup,
such as freeing memory allocated by init () or update (). This method
should call the base class’s cleanup () method after performing class-
specific cleanup, and should do nothing if cfg is NULL. Do not call this from
a derived class’s destructor; it will be called before the destructor, after each
configuration has been evaluated. This method should return 0 if the base
class’s method fails. Returns 1 on success, 0 on failure.

virtual int update(void) - This function is called each time step of
simulation to allow the evComponent to update state-dependent variables.

p-file variables

Variable Description Default value

int enabled Determines whether or not the evComponent is

used. Note that this is actually read by the eval-

uatorbefore creating the evComponent.

1
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Source file

db/evComponent.h

See also

evaluator

int verboseLevel Sets the level of text output. 1 (SO_WARNINGS)

char label[] A symbolic label for the evComponent, allow-

ing it to be found by other evComponents.

Variable Description Default value
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collisionDetector

The collisionDetector is an evComponent that uses the RAPID collision detection
library to detect robot self-collisions, and collision between the robot or its payload with
external obstacles. The collisionDetector can also compute the points of intersection be-
tween polyhedra when being used for simulation of contact. Some modules define low-
detail polyhedra for their links; the collision detector will use these low-detail models if
they have been defined. Several behaviors for detecting self-collisions are available, based
on the value of checkSelfCollisions:

CD_ALL (0)- all intersections between different links of the robot should be
reported

CD_IGNORE_JOINTS (1)- ignore intersections between links that are directly
connected by a joint. This is useful when using joint modules that do not
have a small gap between links.

CD_NONE (2) - no self-collisions will be reported.

Additionally, modules may override the virtual function addAdditionalI-
gnoredCDPairs() to indicate that specific links should be allowed to intersect. An ex-
ample of the use of this method is the prismaticTube module, which uses cylinders
rather than hollow tubes for its low-detail representation to reduce polygon count. The
prismaticTube allows these cylinders to intersect each other so that they do not gener-
ate collisions. To allow the links containting parts p1 and p2 to intersect, a module’s ad-
dAdditionalIgnoredCDPairs()  method should contain the following statements:
    p1->l->cdb->addIgnoredObject(p2->l->cdb);
    p2->l->cdb->addIgnoredObject(p1->l->cdb);

Derivation

collisionDetector : evComponent : synObject

Data members

static int currentTriId - a counter used to generate unique IDs for RAPID
triangles.

int numCollisions  - the number of intersecting bodies last found by
checkCollisions() .

int checkSelfCollisions  - determines how detection of self-collisions is
performed (see above).

int checkJointLimits - if 1, then a collision will be generated any time a joint
moves past its limit. This is useful when dynamic simulation is being used,
but without unilateral constraints to enforce joint limits.
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int createITris  - a value of 1 indicates that triangles should be allocated for
purposes of polyhedra intersection calculation. This variable must be 1 if
computeIntersections() will be called.

int addCfgLinks - 1 indicates that a configuration’s links should be checked for
collisions. When 0, it is assumed that some other evComponent or the
evaluator will specifically indicate which links should be checked via the
addLinkModel()  method.

ptrList *cfgObjects  - a list of cdObjects  that represent parts of the
configuration or attached payloads

ptrList *obstacles  - cdObjects  that represent external obstacles
ptrList *objects  - the union of cfgObjects  and obstacles
ptrList *pairs  - a list of cdPairs , each of which contains a pair of

cdObjects  that should be checked for collisions.

New methods

Checking collisions and intersections
int checkCollisions(void)  - computes and returns the number of objects

that are intersecting. Also stores this number in numCollisions.
ptrList *computeIntersections(void)  - returns a ptrList  of

cdObjectIntersections , one for each pair of objects that are
intersecting. Each cdObjectIntersection contains a list of intersection
points between two triangles, one from each object. The caller of this
method should call collisionDetector::freeIntersectionList ,
with the returned list as the argument, when done with the contents of the
list.

Adding and removing objects
int addLinkModel(link *l, void *userData = NULL)  - adds a new

cdBody  for the specified link, and sets the cdBody’s userData  field to
the supplied value.

int createLinkObstaclePairs(void)  - when using addLinkModel , the
caller should call this function after adding all links.

void addObject(cdObject *o) - adds the supplied object to the list of objects
and creates new cdPairs if necessary.

void addObjects(ptrList *p) - same as addObject , but for a list of objects
int removeObject(cdObject *o) - removes the cdObject and any pairs that

may reference it.
void addObstacle(cdPolyhedronObstacle *o)  - adds an obstacle.

Convenience functions
cdObject *getObject(int i)  - returns the ith cdObject .

cdPair *getPair(int i)  - returns the ith cdPair .
void freeIntersectionList(ptrList *ilist) - deletes the list returned

by computeIntersections, and its contents.
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p-file variables

Source file

collision/collision.*

See also

evaluator
evComponent

Variable Description Default value

int checkSelfCollisions See ‘Data members’ above -

int readObstacles See ‘Data members’ above -

int checkJointLimits See ‘Data members’ above -

int createITris See ‘Data members’ above 0

int addCfgLinks See ‘Data members’ above 1

char obstacleFilename[] If readObstacles is 1, this variable is read to deter-

mine the name of the file containing obstacle def-

initions.

-
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genericPath

The genericPath is an abstract base class for representing trajectories for robot end
effectors. Tool forces and torques to be applied along the path may be specified, and a
payload to be moved along the path may also be specified.

Derivation

genericPath : evComponent : synObject

Data members

Variables controlling path behavior
int pathNum - provides an ordering for paths; for example, the pathEvaluator

and kin assign the path to the path group indicated by this number.
int endPtNum  - the index of the end effector for which the path is intended

int usePayload  - 1 if the path has an associated payload, 0 otherwise.
payload *pl  - a pointer to the payload used for the path.
int useAppliedForce  - 1 if toolForce  and toolTorque  should be exerted

by the end effector during the path, 0 otherwise.
triple toolForce  - the force (in world coordinates) to exert along the path.
triple toolTorque - the torque (moment, really, in world coordinates) to exert

along the path.
endPointRec *endPt - a pointer to the end effector following the path. This gets

set by configuration::setToolPath .
const char *payloadLabel  - when usePayload  is 1, this label specifies

which payload from the evaluator’s p-file is used.
int alignPayload - indicates whether or not the payload’s connector should be

aligned to the end effector’s TCP before attaching the payload to the end
effector. A value of 1 indicates that the payload’s pose should be altered to
bring it into alignment, while 0 indicates that the payload should be rigidly
attached to the end effector from its current pose.

int payloadConnectorID - the connector ID for the connector on the payload
that should be aligned to the end effector’s TCP if alignPayload  is 1.

triple lastVel  - the linear velocity (in world coordinates) of the TCP at the
previous time step.  This is normally set by sriController  or a derived
class.

triple lastOmega  - the angular velocity (in world coordinates) of the TCP at
the previous time step. This is normally set by sriController  or a
derived class.

New methods
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virtual void getStartPoint(triple &t, quaternion &q) - (pure
virtual) Returns the position and orientation of the first point on the path

virtual vector computeVel(double dt, quaternion *outputFrame
= NULL)  - (pure virtual) Returns a 6-vector containing the desired linear
and angular velocity of the end effector. dt is the expected size of the time
step that will be taken using the returned velocity command, and is used for
computing the acceleration. If outputFrame is non-null, then the velocities
are transformed by the supplied quaternion.

virtual void reset(void)  - resets all state variables to their initial values.
virtual int atStart(void)  - returns 1 if the end effector has reached the

starting point of the trajectory.
virtual int done(void) - returns 1 if the end effector has reached the end of

the path
virtual double completion(void)  - returns a number between 0 and 1

indicating the portion of the path that has been completed.
virtual triple computeCrossTrackError(triple &pos)  - (pure

virtual) Computes the cross-track error (distance to the closest point on the
trajectory, in world coordinates) of pos .

virtual triple computeOrientationError(quaternion &q)  - (pure
virtual) - Returns the rotational error (in axis*angle format) between the
supplied orientation and the current goal or location on the path.

p-file variables

Variable Description Default value

int endPtNum See “Data Members” above.

int pathNum See “Data Members” above. This can be set to 0 if

the evaluator  does not use it.

int usePayload See “Data Members” above. Note that if a value of

0 is specified in the p-file, the evaluator or an

evComponent can still set usePayload to

1 later if the value of pl  is also set.

0

int useAppliedForce  See “Data Members” above. 0

int payloadConnectorID See “Data Members” above.

int alignPayload See “Data Members” above.

char payloadLabel[] See “Data Members” above.

double toolForce{X,Y,Z} See “Data Members” above. The evaluator  or

an evComponent  can set this later.

0

double toolTorque{X,Y,Z} See “Data Members” above. The evaluator  or

an evComponent  can set this later.

0
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Source file

ctrl/path.*

See also

evaluator
evComponent
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path

The path class represents trajectories for a robot’s Tool Control Point (TCP) as a
series of via points (positions and orientations) in world coordinates. Via points may ei-
ther be read from a file, or set by an evaluator or evComponent . Parameters for the ve-
locity profile to use when moving between points may be specified through a p-file or
through task parameters, and the TCP can either stop at or continue through each via
point. The user can also specify the position and velocity tolerances used to determine
when the TCP is considered to have reached a via point.

A path is usually used in conjunction with the sriController or subclasses
thereof, and interfaces with the controller primarily through the computeVel method.
computeVel considers the position, orientation, and linear and angular velocity of the
TCP and computes a desired velocity for the TCP that moves it directly towards the next
via point on the path. The TCP’s acceleration and deceleration are bounded by maxAcc
and maxOmegaDot, and the computed velocity command is bounded by maxVel and
maxOmega. PID control is used to compute velocity commands in the vicinity of via
points, with the PID gains computed from the velocity and acceleration parameters. The
ability of the TCP to stop at a via point (i.e. the convergence) is heavily dependent on the
velocity and acceleration parameters, the position and velocity tolerances for the via
point, and the simulation stepsize used. Including the velocity and accleration parame-
ters as task parameters is highly recommended.

The path class defines several virtual functions that subclasses can use to provide
new behavior. getPoint () returns the ith via point, allowing a subclass to transform or
otherwise manipulate the via points stored in waypt [] and orientation [] before they
are used. modifyEndpointPoseAndPath () also allows subclasses to modify the TCP
and via point locations used by computeVel() , and modifyVelocityCommand() can
be used by subclasses to modify the velocity command computed by computeVel before
it is returned to the caller.

Derivation

path : genericPath : evComponent : synObject

Data members

Waypoint information
int np  - the number of via points in the path
triple *waypt  - position for each via point.
quaternion *orientation  - orientation for each via point
int *stopAtPoint  - an array of np ints indicating whether the end effector

should stop at each via point.
int useSameTol  - a value of 1 implies that the same tolerances should be used

for all via points; 0 implies that a tolerance will be supplied for each via
poitn.
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double *tol - distance from via point at which the end effector is considered to have
reached the via point. If useSameTol is 1, then tol will point to a double; if
useSameTol is 0, then tol is an array of np  doubles.

double *vTol - when stopping at a via point, the end effector’s velocity must be
less than vTol. Either an array or a single value, depending on useSameTol
(see tol above).

double *angleTol - angle from via point orientation at which the end effector
is considered to have reached the via point. Either an array or a single value,
depending on useSameTol  (see tol  above).

Velocity and acceleration variables.
double vel  - Maximum linear velocity
double omega  - Maximum angular velocity
double maxAcc  - Maximum linear acceleration
double maxOmegaDot  - Maximum angular acceleration
double KImultiplier  - When greater than zero, this number muliplies kp

(below) to determine ki .

Control gains. These are normally computed from vel, omega, macAcc, and
maxOmegaDot.

double kv, kp, ki  - PID gains for position
double qkv, qkp  - PD gains for orientation
double pdThresh  - distance from via point at which to start PID control.
double qpdThresh  - angle from via point orientation at which to start PID

control

State variables.
int currentPt  - the index of the most recently reached via point
int targetPt  - the index of the point currently being moved towards
double targetDist  - the distance to the target point
triple ep  - accumulated position error vector, used with ki

File formats

When the p-file variable readPath is set to 1, the path object will read via point
information from the file indicated by pathFilename . The format of the path file de-
pends on the value of useSameTol, as specified in the p-file: if useSameTol is 0, then each
waypoint must include data for the tolerances to be used for each point; otherwise, the
tolerances specified in the p-file are used. In either case, the path file is a text file contain-
ing a set of numbers for each via point:

• an integer for stopAtPoint  for the via point
• three floating-point numbers for the location of the via point
• four floating-point numbers for the quaternion representing the TCP

orientation at the via point
• and, when useSameTol is 0, three floating point numbers for tol ,
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angleTol , and vTol  for the via point.

Thus, the path file for a path with two points and useSameTol equal to 1 might
look like this:

1
0 -0.5 1.5
1 0 0 0

1 0.5 1.5
1 0 0 0

If useSameTol were 0, then each point would be followed by an additional three num-
bers for the tolerances.

New methods

virtual int getTargetPoint(triple &pos, quaternion &q,
   triple &targetPos,
   quaternion &targetQ)  - returns the

index of the target point given the current TCP position pos and orientation
q, and returns the position and orientation of the target point in
targetPos  and targetQ .

virtual void getPoint(int i, triple &pos, quaternion &q)
Returns the position and orientation of the ith via point in pos and q,
respectively. Subclasses may override this function, which is used by
getTargetPoint.

virtual void modifyEndpointPoseAndPath(triple &pos,
 quaternion &q,
 triple &tpos,
 quaternion &tq)

This virtual function does nothing by default, but is provided so that
subclasses can modify the current TCP coordinates before they are used by
computeVel . For example, the relativePath overrides this method and
uses it to convert the TCP to a different coordinate system.

virtual void modifyVelocityCommand(triple &v, triple &omega) -
This method does nothing by default, but is provided so that derived
classes can modify the command generated by computeVel . The
relativePath  overrides this method and uses it to compute s world-
space velocity command.

virtual void setNumPoints(int n, int useSameTol)  - resizes the
arrays for via point information to the desired size.
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p-file variables

Task parameters

Source file

ctrl/path.*

See also

evaluator
evComponent

Variable Description Default value

int np See “Data members” above.

double vel See “Data members” above.

double omega See “Data members” above.

double maxOmegaDot See “Data members” above.

double maxAcc See “Data members” above.

double KImultiplier See “Data members” above. -1

int useSameTol See “Data members” above. 1

double tol See “Data members” above. If useSameTol is 1,

this value must be supplied.

double vTol See “Data members” above. If useSameTol is 1,

this value must be supplied.

double angleTol See “Data members” above. If useSameTol is 1,

this value must be supplied.

int readPath Indicates whether the via points should be read

from a file.

1

char pathFilename[] If readPath is 1, this variable should be set to the

name of the file containing the via points

Variable Description

double vel See “Data members” above

double omega See “Data members” above

double maxOmegaDot See “Data members” above

double maxAcc See “Data members” above
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genericPath
payload
pathEvaluator
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relativePath

The relativePath is similar to the path class from which it is derived, with the
main difference being that the via points are defined relative to a link’s coordinate sys-
tem rather than world coordinates. The link is normally either the robot’s base link or a
payload, though any link may be used. The relativePath achieves this by overriding
the path methods getPoint , modifyEndpointPoseAndPath and modifyVeloci-
tyCommand, as well as the evComponent method update . The former three convert be-
tween world and link coordinates.

Derivation

relativePath : path : genericPath : evComponent : synObject

Data members

link *l  - the link whose coordinate system the via points are defined in
payload *relPayload  - if non-NULL, the payload containing l
const char *relativePayloadLabel - the label of the payload (if any) which

the path is relative to
triple btoolForce, btoolTorque - the applied force and torque relative to

l.  These are copied from toolForce and toolTorque during evInit, and can
be set manually. update() converts these to world coordinates and stores
them in toolForce  and toolTorque .

int computeLinkPath - if 1, the velocity command should be modified so that
l’s center of mass follows a straight line in world coordinates.

p-file variables

Source file

ctrl/path.*

See also

evaluator

Variable Description Default value

relativePayloadLabel If the path is relative to a payload and automatic

initialization is desired, this variable should be set

to the label of the payload. If this variable is not

defined, it is assumed that the evaluator  or an

evComponent  will set l .

NULL

computeLinkPath See “Data members” above 0
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evComponent
path
Reference    77



Darwin2K Tutorial
payload

The payload class represents rigid-body payloads composed of multiple polyhe-
dra. Each polyhedron can have a separate density and color (for display), and the payload
can have multiple coordinate frames representing grasp points for a tool’s TCP.

Derivation

payload : evComponent : synObject

Data members

link *l  - the link representing the payload’s geometry
cdBody *b  - a cdBody  for l , if collsion detection is being used
collisionDetector *cd  - the collision detector used by the evaluator, if any.

Set automatically by evInit() .
ptrList *connectors  - list of connectors
triple xrel  - position relative to TCP; computed by computeToolCoords()
quaternion qrel  - orientation relative to TCP; computed by

computeToolCoords()
triple originPos  - initial position of l ’s origin
quaternion initialQ  - initial orientation of l

New methods

Initialization
virtual int readFromFile(void ) - returns 1 if initFromFile() should be

called. Derived classes can override this if they do not need to read
geometry from a file.

int initFromFile(const char *filename, const float *color)
Reads payload geometry from the specified file. If perPolyColor  is 0,
color can be used to supply an array of floats representing a color in RGB
format (with each component between 0 and 1).

Aligning to TCP
void computeToolCoords(triple &xtool, quaternion &qtool)  -

Given the payload’s current pose and tool pose (xtool , qtool ), compute
the pose (xrel , qrel ) relative to the tool

void updatePose(triple &xtool, quaternion &qtool)  - updates l’s
pose given the new TCP location (xtool, qtool) . Also compute’s l->I
from l->Ibody .

int alignConnectorToPose(triple &xtool, quaternion &qtool,
int cnId)  - sets l ’s pose to align the connector given by cnId  with
(xtool , qtool )
78    payload



Darwin2K Tutorial
Convenience functions
int numConnectors(void)  - returns the number of connectors>n; }
connector *getConnector(int n)  - returns the specified connector
connector *getConnectorById(int id)  - returns the connector with

specified ID

File format

The payload file format specifies one or more convex polyhedra, each with a sep-
arate material density. The payload file also describes any coordinate frames attached to
the payload, for use by controllers. The format is:

<number of coordinate frames>
<coordinate frame 1: 16 floating point numbers specifying a

homogeneous coordinate system>
<other coordinate frames, in same format as the first>

<number of polyhedra>

for each polyhedra:
  <density> in kg/m^3
  <r g b> (0->1 for each component;

 omit if perPolyColors = 0)
  <number of points>

  <list of points: x, y, and z for each point>

  <number of faces>

  for each face:
    <number of vertices>
     <list of point indices from the list of points (indices

 start at 0)>

p-file variables

Variable Description Default value

double originPos{X,Y,Z} See “Data members” above 0

double initialQ{R,I,J,K} See “Data members” above. Automatically nor-

malized.

0

int perPolyColors If 1, indicates that a color is stored in the payload

file for each polyhedron

0
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Task parameters

Source file

cfg/payload.*

See also

evaluator
evComponent
path

float color{R,G,B} If perPolyColors is 0, these variables supply the

color for the payload.

{1, 1, 0} (yellow)

Variable Description

double origin{X,Y,Z} See originPos  in “Data members” above.

double initial{R,I,J,K} See initialQ  in “Data members” above. Automatically normalized.

Variable Description Default value
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panelSection

Derivation

payload : evComponent : synObject

Data members

New methods

p-file variables

Task parameters

Source file

Variable Description Default value

Variable Description Default value
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cfg/payload.*

See also

evaluator
evComponent
path
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DEsolver

Derivation

DEsolver : evComponent : synObject

Data members

New methods

p-file variables

Task parameters

Source file

Variable Description Default value

Variable Description Default value
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ctrl/solver.*

See also

evaluator
evComponent
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rungeKutta4

Derivation

rungeKutta4 : DEsolver : evComponent : synObject

Data members

New methods

p-file variables

Task parameters

Source file

Variable Description Default value

Variable Description Default value
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ctrl/solver.*

See also

evaluator
evComponent
DEsolver
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controller

Derivation

controller : evComponent : synObject

Description

Data members

New methods

p-file variables

Task parameters

Variable Description Default value

Variable Description Default value
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Source file

ctrl/controller.*

See also

evaluator
evComponent
DEsolver
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sriController

The sriController uses the Singularity Robust Inverse (SRI) of a robot’s Jaco-
bian to cause the robot’s end effectors to follow Cartesian-space (rather than joint space)
trajectories. The sriController is usually used in conjunction with the path and rela-
tivePath classes, which represent Cartesian trajectories. See Section 4.3 in Darwin2K: An
Evolutionary Approach to Automated Design for Robotics for more information about how the
Singularity Robust Inverse is used. The sriController will generate joint velocity
commands for any degree-of-freedom that affects the motion of an end effector that cur-
rently has a path assigned to it.

When a robot has redundant degrees of freedom, the sriController can use them to
attempt to avoid joint limits. It does this by projecting the vector returned by configu-
ration::computeLimitGradient() onto the nullspace of the Jacobian. The project-
ed vector will cause the robot’s joints to move away from their limits, but will not affect
the instantaneous velocity if the end effector(s). The variable doGradientDescent in-
dicates whether this should be done; when equal to 1, any time the gradient vector is long-
er than ignoreLimitThresh , the gradient will be projected onto the nullspace,
multiplied by gradientStepSize , and added to the joint velocity command computed
from the SRI. These parameters can affect the ability of the controller to precisely stop at
trajectory via points, so it is recommended that they be included as task parameters when
performing synthesis or optimization.

Derivation

sriController : controller : evComponent : synObject

Data members

Note: only those data members that must be set by users of the class are noted here,
as there are many internal variables.

double minRate  - theshhold above which generalized velocity vector
(concatenation of linear and angular velocity of all endpoints) is considered
non-zero; used for determining whether the robot has become “stuck”

sriControllerMode mode - determines how the robot’s DOFs are used:
sriController::FIND_BASE_POSE - only base degrees of freedom are
used
sriController::FIND_MECH_POSE  - all degrees of freedom are used,
and if the robot has a non-holonomic base, the base is allowed to move
freely
sriController::NORMAL  - the robot’s DOFs operate normally.

SRI parameters
double mu  - ratio of current to previous manipulability that triggers use of SRI

rather than pseudo-inverse
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double lambda0  - multiplier for the identity matrix

Joint limit avoidance and redundancy optimization
int doGradientDescent  - 1 if the redundant DOFs should be used to avoid

joint limits, 0 otherwise.
double ignoreLimitThresh  - gradients with norms less than this will be

ignored.
double gradientStepSize  - multiplier for the gradient

New methods

void setMode(sriControllerMode m)  - sets the current mode of the
controller.

p-file variables

Task parameters

Source file

ctrl/sriController.*

Variable Description Default value

double mu See “Data members” above 0.1

double lambda0 See “Data members” above 0.0003

double minrate See “Data members” above 0.0001

double ignoreLimitThresh See “Data members” above 0.1

double gradientStepSize See “Data members” above 0.001

int doGradientDescent See “Data members” above 1

Variable Description

double mu See “Data members” above

double lambda0 See “Data members” above

double ignoreLimitThresh See “Data members” above

double gradientStepSize See “Data members” above

int doGradientDescent See “Data members” above. Only the least-significant bit is used.
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See also

evaluator
evComponent
controller
DEsolver
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ffController

The ffController is similar to the sriController , but uses the robot’s dy-
namic model to account for the reaction forces applied to free-flying bases by a robot’s
manipulator(s). The programming and file interfaces for the ffController are identical
to those of the sriController . See Section 4.4.4 in Darwin2K: An Evolutionary Approach
to Automated Design for Robotics for a derivation of the ffController’s  behavior.

Derivation

ffController : sriController : controller : evComponent
: synObject

Source file

ctrl/ffController.*

See also

evaluator
evComponent
DEsolver
sriController
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pidController

Derivation

pidController : controller : evComponent : synObject

Data members

New methods

p-file variables

Task parameters

Source file

Variable Description Default value

Variable Description Default value
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ctrl/pidController.*

See also

evaluator
evComponent
DEsolver
controller
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roverController

Derivation

roverController : controller : evComponent : synObject

Description

Data members

New methods

p-file variables

Task parameters

Variable Description Default value

Variable Description Default value
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Source file

ctrl/roverController.*

See also

evaluator
evComponent
DEsolver
controller
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Glossary

actuator saturation - the ratio of applied torque (or force) to an actuator’s maximum
available torque (or force). An actuator saturation greater than one indicates that
the controller commanded a torque beyond the actuator’s capability.

class - in object-oriented programming, a class is a description of a data type and a set of
related functions.

component context - a set of component lists, with one list for each of a module’s
component-selection parameters. Each component list contains one or more
components of similar type, e.g. motors or actuators.

configuration - the general form of the robot, including kinematics and other geometry
at the bare minimum and usually including descriptions of inertial properties,
actuator and material selection, and structural geometry.

configuration graph - see Parameterized Module Configuration Graph (PMCG)

configuration optimization - the process of improving the performance of a robot
configuration (or small number of configurations) through parametric variation

configuration synthesis - the process of generating a high-level description of a robot and
improving its performance through parametric and topological variation.

const flag - a flag associated with parameters and attachments in the Parameterized
Module Configuration Graph that can be set by the designer to indicate that the
parameter or attachment should not be changed by the synthesizer.

degree of freedom (DOF) - an independent variable describing part of the state of a robot.
The state of an n-DOF robot can be uniquely and completely described by n
variables.

Denavit-Hartenburg (D-H) parameters - a commonly-used set of parameters describing
the kinematics of a robot, in which each pair of successive joints is characterized
by a distance between joint axes a, a twist between joint axes α, an offset d, and a
joint angle θ. See e.g. [Denavit55] for details.

directed acyclic graph (DAG) - a graph in which each edge has a direction and in which
no path along the edges passes through a node more than once.

dynamic simulation - computing the motion of a mechanical system (e.g. a robot) based
on the forces and torques applied to the system. (Compare to kinematic
simulation.)

elitism - in an evolutionary algorithm, elitism refers to explicitly preserving or
reproducing a subset of the population that are considered to be ’best’.

elite set - in an evolutionary algorithm, the subset of the population that is considered to
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be ’best’. In a single-objective EA, the elite set might contain the n-best solutions;
in a multi-objective EA, it might contain the Pareto-optimal set. In Darwin2K, it is
defined to be the feasibly-optimal set.

evolutionary algorithm (EA) - an optimization algorithm (often probabilistic in nature)
based on biological theories of evolution. Typical features include the use of a
population of solutions, selection of solutions based on fitness (analogous to
“survival of the fittest”), and creating new solutions by combining or modifying
existing solutions.

evolutionary synthesis engine (ESE) - in Darwin2K, the program that maintains a
population of configurations, creates new configurations, and sends them to one
or more evaluation processes which measure their performance.

feasibly-optimal set - in Darwin2K, the subset of the population that is considered ‘best’.
If any configurations are feasible, then the feasibly-optimal set is the Pareto-
optimal set taken over all feasible configurations in the population. If no
configurations are feasible, then the feasibly-optimal set is the Pareto-optimal set
taken over the entire population.

fitness - a figure of merit reflecting the performance of a solution in an evolutionary
algorithm

fitness-proportionate selection - in an evolutionary algorithm, a method of selecting
solutions for reproduction in which a solution is selected with probability directly
proportional to its fitness

generational genetic algorithm - a genetic algorithm that creates an entire new
population of solutions at once and then evaluates them all. This is the standard
method for creating new solutions in a GA.

genetic algorithm (GA) - an evolutionary algorithm that represents solutions as a string
of symbols (usually a fixed-length string of bits), uses crossover, duplication, and
mutation to create new solutions, and selects solutions for reproduction on the
basis of their performance.

genetic programming (GP) - an evolutionary algorithm that represents solutions as
programs. The fitness of a program is determined by executing it, rather than by
measuring some property of the program.

globally optimal planner - a planner that is guaranteed to find the globally-optimal
motion with respect to a cost metric (usually either time or distance) down to the
level of discretization used.

graph - a data structure or mathematical object consisting of nodes connected by edges.
Each edge has two endpoints and may have a direction associated with it.

kernel - an initial configuration specified by the designer from which all other
configurations are generated through the application of genetic operators.
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kinematic simulation - computing the motion of a mechanical system (e.g. a robot) by
considering only position variables and their derivatives, rather than forces and
torques.

kinematics - the study of a mechanism’s motions without regard to forces, torques, or
inertia.

locally optimal planner - a planner that is not guaranteed to find the optimal motion.
Typically much less computationally expensive than globally-optimal planners.

member - in OOP, part of the description of a class. A data member describes a property
of objects that belong to the class, while a member function (or method) describes
the behavior of objects belonging to the class.

method - see member

module - a self-contained software object representing part of a robot. In Darwin2K, a
module contains data describing the its properties, and functions describing its
behavior.

object - in Object-Oriented Programming, a self-contained set of properties and
associated procedures.

parameter - in Darwin2K, a value that may be varied by the synthesis algorithm.
Parameters are described by several features: the minimum and maximum values
of the parameter, the resolution, an integer value, a real value, and a const -flag.
Modules can have parameters, and configurations can have parameters associated
with them that describe aspects of the task.

parameterized module - an object representing part of a robot, including both data and
function members. Parameterized modules may have zero or more parameters
describing arbitrary properties, and can specify connectors that indicate how the
module can be connected to other modules.

parameterized module configuration graph (PMCG) - the representation for robot
configurations used in Darwin2K. The PMCG consists of a list of modules and
connections between them and allows both parametric and topological variation
of robot properties.

Pareto-optimal set - given a set of multi-dimensional measurements (e.g. robot
configurations with performance measurements), the Pareto-optimal set is those
measurements that are better than or equivalent to every other measurement along
at least one dimension. Also called the non-inferior set, as every member of the set
is not inferior (i.e. worse than another element in all dimensions) to any other
element of the set.

simple genetic algorithm (SGA) - the basic genetic algorithm, using a single population
and representing solutions as fixed-length bit strings.
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steady-state genetic algorithm (SSGA) - a genetic algorithm that continuously adds
solutions to, and removes solutions from, a population. Contrast to a generational
genetic algorithm.

task parameter - a variable or property that does not belong to a configuration but which
can be optimized by the synthesizer. Examples include via point location and
controller gains.

tool control point (TCP) - a position and orientation defined relative to an end effector
(tool) that is used to specify the motion of the effector. For example, the TCP for a
gripper might be the point midway between the gripper’s fingers.
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